

 Navigation

 	
 index

 	
 next |

 	Aery32 v0.5.0 documentation

Welcome to Aery32’s documentation!

	Getting Started
	Basics of the embedded software

	Project structure – where things go?
	Aery32 library, aery32/

	Main source file, main.cpp

	Board specific functions, board.h and .cpp

	Build system, Makefile

	Project wide settings, settings.h

	Example programs, examples/

	The build system
	Chip programming

	How to add new source files to the project

	Compile with debug statements

	Delay functions, #include <aery32/delay.h>
	Use RTC for long delays

	Module functions
	Naming convention and the calling order

	Global variables and error handling

	Analog-to-digital conversion, #include <aery32/adc.h>

	Flash Controller, #include <aery32/flashc.h>

	General Periheral Input/Output, #include <aery32/gpio.h>

	Interrupt Controller, #include <aery32/intc.h>

	Power Manager, #include <aery32/pm.h>

	Pulse Width Modulation, #include <aery32/pwm.h>

	Real-time Counter, #include <aery32/rtc.h>

	Serial Peripheral Bus, #include <aery32/spi.h>

	Two-wire (I2C) Interface Bus, #include <aery32/twi.h>

	Universal Synchronous/Asynchronous Receiver/Transmitter (USART), #include <aery32/usart.h>

	String functions, #include <aery32/string.h>
	Integer number to string

	Double to string

	UC3A0/1 system clocks described
	Main clock means the CPU clock

	Contributor’s guide
	Sending a pull request (creating a patch)

	Coding standards

	Writing the documentation

Aery32 Framework in your favorite editor

	Eclipse Juno
	Installation

	Import Aery32 Framework as a Makefile project

	Setting Paths and Symbols

	Setting Makefile targets

	Sublime Text 2
	Shortcut keys

	Autocomplete with SublimeClang

	Aery32 plug-in

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Getting Started

The best way to get started is to follow the Quick Start from Aery32’s homepage, http://www.aery32.com/pages/quick-start.

Basics of the embedded software

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#include "board.h"
#include <aery32/all.h>

using namespace aery;

int main(void)
{
 /*
 * Put your application initialization sequence here. The default
 * board_init() sets up the LED pin and the CPU clock to 66 MHz.
 */
 init_board();

 /* All done. Turn the LED on. */
 gpio_set_pin_high(LED);

 for(;;) {
 /* Put your application code here */

 }

 return 0;
}

Above you can see a basic embedded software coded by C++ programming language for Aery32. This piece of source code can be found from the main.cpp source file. The main() function at line 7 is the first function to execute when the program starts – thus it is called main. The void keyword inside the brackets of the function, tells that the function does not take any arguments. The main function hardly ever takes arguments in embedded software, so this is a very common situation.

The int keyword, before the main function, indicates that the function will return integer type variable. Again, in the real life embedded software, it is very common that there is no use for the return value of main. The return type has been specified here to be integer type, instead of making it void, only to keep the compiler happy. Otherwise the compiler would give a warning, which we do not want to see. For the sake of consistency the return value has been set zero at line 21, but the running application should never reach that far, or if it does, some serious error has occurred. Altough there is no use for the input arguments and the return value of the main function, the other functions, of course, may have arguments and can return values which are relevant.

Where to put the application code?

If the program should never reach the line 21, you might guess where the code of actual application is placed. Correct! It is placed inside of the infinite for(;;) loop. This loop goes on and on accomplish the code inside of it until the power is switched off. In this particular software there is only a comment line inside of the loop, so pretty much nothing is happening. What happens has been done at lines 10, 11 and 14. These functions will be executed only once, because those do not fall into the infinite for-loop. Furthermore, these function calls comes with the Aery32 Software Framework. The first one initializes the board, which is pretty much about starting the 12 MHz crystal oscillator and then setting up the main clock to 66 MHz. The second function call initializes a general purpose pin named LED that is the pin PC04 to be exact as defined at line 5. The GPIO_OUTPUT part of the line states that the LED pin will be an output. Making the pin high at line 13 turns the LED on, so in conclusion the job of this software is only to keep the LED burning.

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Project structure – where things go?

Aery32 Software Framework provides a complete project structure to start
AVR32 development right away. You just start coding and adding your files.
The default project directory structure looks like this:

projectname/
 aery32/
 ...
 board.cpp
 board.h
 main.cpp
 Makefile
 settings.h

It is intended that you work under the root directory most of the time as
that is the place where you keep adding your .c, .cpp and .h source files.
Notice that Aery32 Framework is a C/C++ framework and thus you can write
your code in both C and C++. Just put the C code in .c files and C++ code
in .cpp files.

The following subsections define each part of the default project structure
in alphabetic order as they are listed above.

Aery32 library, aery32/

The directory called aery32/ contains the source files of the Aery32
library. The archive of the library (.a file) appears in this directory after
the first compile process. The aery32/ subdirectory within the aery32/
contains the header files of the library. Additionally, linker scripts,
which are essential files to define the MCU memory structure are kept under
this directory. Take a look at the ldscripts/ subdirectory if you are
curious.

Note

Although you can, you should not need to hassle with any file under this
directory.

Main source file, main.cpp

The main.cpp source file contains the default main function where to
start building your project. First the board.h header file has been
included. This file includes your application specific function prototypes,
which are defined in board.cpp. For your convenience a small
board::init() function is provided by default. This function is called
within the main function at line 11. It’s the first function call here.
The second call is to set the LED pin high.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	#include "board.h"
using namespace aery;

int main(void)
{
 /*
 * Put your application initialization sequence here. The default
 * board initializer defines the LED pin as output and sets the CPU
 * clock speed to 66 MHz.
 */
 board::init();
 gpio_set_pin_high(LED);

 for(;;) {
 /* Put your application code here */

 }

 return 0;
}

Board specific functions, board.h and .cpp

Use these two files for your board specific functions and macro definitions.
A macro definition is for example the following pin declaration

#define LED AVR32_PIN_PC04

Now you don’t have to always recall which pin the LED was connected when
you want to switch it on. So instead of using this

aery::gpio_set_pin_high(AVR32_PIN_PC04);

you can use this

aery::gpio_set_pin_high(LED);

You can find this default LED macro definition from board.h. There are
also other default board related definitions, which you may need to change
according to your project. Those are for example

#define ADC_VREF 3.0
#define ADC_BITS 10

These two macro definitions are related to the analog to digital converter
(ADC). To change the reference voltage of the ADC, modify the ADC_VREF.
Similarly if you decide to use, for example, only eight bits accuracy alter
ADC_BITS accordingly. You may like to reduce the accuracy in favor
throughput rate of the analog to digital converter. With smaller accuracy
ADCs generally work faster.

From these ADC related settings, we get to one of the functions declared in
the default version of board.h. That’s board::cnv2volt().

static inline double cnv2volt(uint32_t cnv)
{
 return cnv * ((double) ADC_VREF / (1UL << ADC_BITS));
}

This function han’t been declared in a library because it’s highly dependant
of the reference voltage and accuracy of ADC. Note how it uses ADC_VREF
and ADC_BITS internally to calculate the correct voltage for the
conversion.

It’s intended that you define all your board related functions in board.h
and then implement those in board.cpp. Example programs
coming with the framework are built in one file with the main function in
purpose, but when used in real application those should be refactored into
board.h and .cpp.

For example, consider that you had a device which to communicate via SPI. To
take an advance of the board abstraction you could write a function like this

uint8_t board::write_to_device(uint8_t byte)
{
 return aery::spi_transmit(spi0, 2, byte);
}

See how the above function abstracts which SPI and slave select you are using.

Default board initializer

The default board initializer function, board::init(), can be found from
the board.cpp source file. The prototype of this function is declared
in board.h.

Here’s what it basicly does by default

	Sets all GPIO pins inputs

	Defines LED pin as output

	Starts the external oscillator OCS0

	Sets the chip’s master (or main) clock frequency to its maximum,
which is 66 MHz

If you like to change the master clock frequency or want to change the way
how the board is initialized, board::init() is the place where to do it.

Note

All board related functions should use a namespace board to not
introduce any name collision with other functions added into the project.

Build system, Makefile

Makefile contains all the make recipes for compiling the project and uploading
the compiled binary to the board. See more detailed instructions
from the build system section.

Note

Generally Makefiles don’t have a file postfix like .cpp and it’s
a common practice to start its name with capital M.

Project wide settings, settings.h

In this file you can define project wide global settings. Aery32 Framework
is also aware some of the settings defined in this file. For example, to get
the delay functions work properly you have to define the correct CPU frequency,
F_CPU, in this file. Below you can see how some essential settings have
been defined.

#define F_OSC0 12000000UL
#define F_OSC1 16000000UL
#define F_CPU 66000000UL

Note

This file is provided to GCC via -include

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Example programs, examples/

Aery32 Framework comes with plenty of example programs, which are placed
under the examples/ directory. Every file is an independent program
that does not need other files to work. So it should work out of box if you
just replace the default main.cpp with the example.

To test, for example, the LED toggling demo open the Command Prompt
and command:

cp examples\toggle_led.cpp main.cpp
make programs

The following lines of commands overwrite the present main.cpp file
from the project root with the example, compiles the project and uploads
the new binary to the development board. The program starts running
immediately.

Note

The quickest way to access Command Prompt in Windows is to press
Windows-key and R (Win+R) at the same time, and type cmd.

Note

You are free to remove the examples/ directory from your project
if you don’t need it.

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

The build system

Aery32 Framework comes with a powerful Makefile that provides a convenient way to compile the project. It also has targets for chip programming.

To compile the project just command:

make

When the compilation process is done, binaries will appear under the project’s root (aery32.hex and aery32.elf). These two files are used in chip programming or program uploading, or chip flashing. Whatever you like to call it. In addition to the binaries, assembly listing and file mapping files, have been created. aery32.lst and aery32.map, respectively.

The program size is also showed at the end of the compile, like this:

Program size:
 text data bss dec hex filename
 3724 1344 4176 9244 241c aery32.elf
 0 5068 0 5068 13cc aery32.hex

.text correspond the FLASH usage and .data + .bss is the total amount of RAM allocation. Note that you have to take the size of the stack (and possibly heap) into account as well. .bss section is the place where the initialized data is copied at runtime during the startup.

Note

By default the project is compiled with -O2 optimization. If you run into troubles and your program behaves unpredictly on the chip, first try some other level of optimization

make reall COPT="-O0 -fdata-sections -ffunction-sections"

Chip programming

To program the chip with the compiled binary type:

make program

At this point the Makefile attempts to use batchisp in Windows and dfu-programmer in Linux, so make sure you have those installed. If you also want to start the program immediately type:

make program start

or in shorter format:

make programs

If you want to clean the project folder from the binaries call:

make clean

To recompile all the project files call:

make re

The above command recompiles only the files from the project root. It does not recompile the Aery32 library, because that would be ridiculous. If you also want to recompile the Aery32 library use make reall. There’s also cleanall that cleans the Aery32 folder in addition to the project’s root.

How to add new source files to the project

New sources files (.c, .cpp and .h) can be added straight into the project’s root and the build system will take care of those. If you like to separate your source code into folders, for example, into subdirectory called my/ then you have to edit the Makefile slightly. After creating the directory, open the Makefile and find the line:

SOURCES=$(wildcard *.cpp) $(wildcard *.c)

Edit this line so that it looks like this:

SOURCES=$(wildcard *.cpp) $(wildcard *.c) $(wildcard my/*.c) $(wildcard my/*.cpp)

Compile with debug statements

There are two additional make targets that helps you in debugging, make debug and make qa. The most important is:

make debug

This compiles the project with the debug statements. Use this when you need to do in-system debugging.

For quality assurance check use:

make qa

This target compiles the project with more pedantic compiler options. It’s good to use this every now and then. Particularly when there are problems in your program. This target can also tell you, if your inline functions are not inlined for some reason.

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Delay functions, #include <aery32/delay.h>

There are three convenience delay functions that are intented to be used for short delays, from microseconds to milliseconds.

delay_us(10); /* wait 10 microseconds */
delay_ms(500); /* wait half a second */

These functions are dependent on the CPU clock frequency that has to be provided via F_CPU definition before the delay.h header file has been included, like this

#define F_CPU 66000000UL
#include <aery32/delay.h>

If F_CPU is not defined, you can still use a low level delay function that takes the number of master clock cycles as a parameter

delay_cycles(1000); /* wait 1000 master clock cycles */

Hint

You can make smaller than 1 us delays with delay_cycles().

Use RTC for long delays

Realtime counter (RTC) is better for long time delays or countdowns that last minutes, hours, days or even months or years. For example, to toggle the LED every second one can use rtc_delay_cycles() function.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	#include <aery32/gpio.h>
#include <aery32/rtc.h>
#include "board.h"

using namespace aery;

int main(void)
{
 init_board();
 gpio_init_pin(LED, GPIO_OUTPUT);

 rtc_init(0, 0xffffffff, 0, RTC_SOURCE_RC);
 rtc_enable(false);

 for(;;) {
 gpio_toggle_pin(LED);
 rtc_delay_cycles(57500);
 }

 return 0;
}

The application above first initialize the RTC to start counting from zero to 4 294 967 295, which is 0xffffffff in hexadecimal. The third parameter is a prescaler for the RTC clock, which was set to be the in-built RC clock. The RC clock within the AVR32 UC3A1 works at 115 kHz frequency, but it’s frequency is always divided by two when used for RTC. This means that the counter will be incremented every 1/(115000/2) second (approx. every 17.4 us).

When initialized, the RTC has to be enabled before it starts counting. This has been done by calling the rtc_enable() function. The first parameter indicates whether the interrupts are enabled too. Here we did not use those and thus false was passed as a parameter. However, when much longer delays or time calculations are desired, interrupts should be used. Below is an example program that toggles the LED every minute through the RTC interrupt event function, isrhandler_rtc().

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	#include <aery32/gpio.h>
#include <aery32/intc.h>
#include <aery32/rtc.h>
#include "board.h"

using namespace aery;

void isrhandler_rtc(void)
{
 gpio_toggle_pin(LED);
 rtc_clear_interrupt(); /* Remember to clear RTC interrupt */
}

int main(void)
{
 init_board();
 gpio_init_pin(LED, GPIO_OUTPUT|GPIO_HIGH);

 rtc_init(0, 60*115000/2, 0, RTC_SOURCE_RC);

 intc_init();
 intc_register_isrhandler(&isrhandler_rtc, 1, 0);
 intc_enable_globally();

 rtc_enable(true);

 for(;;) {
 }

 return 0;
}

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Module functions

Modules are library components that operate with the MCU’s internal peripherals. Every module has its own namespace according to the module name. For example, Power Manager has module namespace of pm_, Realtime Counter falls under the rtc_ namespace, etc. To use the module just include its header file. These header files are also named after the module name. So, for example, to include and use functions that operate with the Power Manager include <aery32/pm.h>.

Naming convention and the calling order

The common calling order for modules is the following: 1) initialize, 2) do some extra setuping and after then 3) enable the module. In pseudo code it looks like this

module_init();
module_setup_something();
module_enable();

The init function may also look like module_init_something(), for example, the SPI can be initialized as a master or slave, so the naming convention declares two init functions for SPI module: spi_init_master() and spi_init_slave().

If the module has been disabled, by using module_disable() function, it can be re-enabled without calling the init or setup functions. Most of the modules can also be reinitialized without disabling it before. For example, general clock frequencies can be changed by just calling the init function again – this is also the quickest way to change the frequency

pm_init_gclk(GCLK0, GCLK_SOURCE_PLL1, 1);
pm_enable_gclk(GCLK0);

/* Change the frequency divider */
pm_init_gclk(GCLK0, GCLK_SOURCE_PLL1, 6);

If you have read through the MCU datasheet, you may wonder why you cannot set all the possible settings with the initialization and setup functions. This is because these functions set sane default values for those properties. These default values should work for 80-90% of use cases. However, sometimes you may have to fine tune these properties to match your needs. This can be done by bitbanging the module registers after you have called the init or setup function. For example, the SPI chip select baudrate is hard coded to MCK/255 within the spi_setup_npcs() function. To make SPI bus faster you can bitbang the SCRB bit within CSRn register, where n is the NPCS number.

spi_setup_npcs(spi0, 0, SPI_MODE1, 16);
spi0->CSR0.scbr = 32; /* SPI baudrate for the CS0 is now MCK/32 */

Note

Modules never take care of pin initialization, except GPIO module that’s for this specific purpose. So, for example, when initializing SPI you have to take care of pin configuration!

#define SPI0_GPIO_MASK ((1 << 10) | (1 << 11) | (1 << 12) | (1 << 13))
gpio_init_pins(porta, SPI0_GPIO_MASK, GPIO_FUNCTION_A);

Global variables and error handling

Every module declares global shortcut variables to the main registers of the module. For example, the GPIO module declares porta, b and c global pointers to the MCU ports by default. Otherwise, you should have been more verbose and use &AVR32_GPIO.port[0], &AVR32_GPIO.port[1] and &AVR32_GPIO.port[2], respectively. Similarly, pll0 and pll1 declared in PM module provide quick access to MCU PLL registers etc.

Hint

As porta, b and c are pointers to the GPIO port, you can access its registers with arrow operator, for example, instead of using function gpio_toggle_pin(AVR32_PIN_PC04) you could have written portc->ovrt = (1 << 4); This is also way how you can set/unset/read/toggle multiple pins at once. Refer to the UC3A0/1 datasheet pages 175–177 for GPIO Register Map.

Error handling

All module functions will return -1 on general error. This will happen most probably because of invalid parameter values. Greater nagative return values have a specific meaning and a macro definition in the module’s header file. For example, flashc_save_page() of Flash Controller may return -2 and -3, which have been defined with E prefixed names EFLASH_PAGE_LOCKED and EFLASH_PROG_ERR, respectively.

Analog-to-digital conversion, #include <aery32/adc.h>

UC3A0/1 microcontrollers have eight 10-bit analog-to-digital converters. The maximum ADC clock frequency for the 10-bit precision is 5 MHz. For 8-bit precision it is 8 MHz. This frequency is related to the frequency of the Peripheral Bus A (PBA).

adc_init(
 7, /* prescal, adclk = pba_clk / (2 * (prescal+1)) */
 true, /* hires, 10-bit (false would be 8-bit) */
 0, /* shtim, sample and hold time = (shtim + 1) / adclk */
 0 /* startup, startup time = (startup + 1) * 8 / adclk */
);

The initialization statement given above, uses the prescaler value 7, so if the PBA clock was 66 MHz, the ADC clock would be 4.125 MHz. After initialization, you have to enable the channels that you like to use for the conversion. For example, to enable channel three call

adc_enable(1 << 3);

Now you can start the conversion. Be sure to wait that the conversion is ready before reading the conversion value.

uint16_t result;

adc_start_cnv();
while (adc_isbusy(1 << 3));
result = adc_read_cnv(3);

If you only want to read the latest conversion, whatever was the channel, you can omit the channel mask for the busy function and read the conversion with another function like this

while (adc_isbusy());
result = adc_read_lastcnv();

ADC hardware triggers

To setup the ADC hardware trigger, call adc_setup_trigger() after init

adc_setup_trigger(EXTERNAL_TRG);

Other possible trigger sources, that can be used for example with the Timer/Counter module, are

	
	INTERNAL_TRG0

	INTERNAL_TRG1

	
	INTERNAL_TRG3

	INTERNAL_TRG4

	
	INTERNAL_TRG5

Note

You always have to call adc_start_cnv() individually for every started conversion. If you suspect that your conversions may have overrun, you can check this with the adc_has_overrun(chamask) function. If you omit the channel mask input param, all the channels will be checked, being essentially the same than calling adc_has_overrun(0xff).

Flash Controller, #include <aery32/flashc.h>

[image: AVR32 UC3A1/0 Flash Structure]
Flash Controller provides low-level access to the chip’s internal flash memory, whose structure has been sketched in the figure above. The init function of the Flash Controller sets the flash wait state (zero or one, FLASH_0WS or FLASH_1WS, respectively). The last param of the init function enables/disables the sense amplifiers of flash controller.

flashc_init(FLASH_1WS, true);

Warning

Setting up the correct flash wait state is extremely important! Note that this has to be set correctly even if the flash read and write operations, described below, are not used. If CPU clock speed is higher than 33 MHz you have to use one wait state for flash. Otherwise you can use zero wait state.

Warning

The uploaded program is also stored into the flash, so it is possible to overwrite it by using the Flash controller. The best practice for flash programming, is starting from the top. FLASH_LAST_PAGE macro definition gives the number of the last page in the flash. For 128 KB flash this would be 255.

Warning

According to Atmel UC3A1’s internal flash supports approximately 100,000 write cycles and it has 15-year data retention. However, you can easily make a for-loop with 100,000 writes to the same spot of flash and destroy your chip in a second. So be careful!

Read and write operations

Flash memory is accessed via pages that are 512 bytes long. This means that you have to make sure that your page buffer is large enough to read and write pages, like this

#include <cstring>

char buf[512];
flashc_read_page(FLASH_LAST_PAGE, buf); /* Read the last page to separate page buffer */
strcpy(buf, "foo"); /* Save string "foo" to page buffer */
flashc_save_page(FLASH_LAST_PAGE, buf); /* Write page buffer back to flash */

You can also read and write values with different types as long as the page buffer size is that 512 bytes. For example like this

extern "C" #include <inttypes.h>

uint16_t buf16[256];
uint32_t buf32[128];

Page locking

The flash page can be locked to prevent the write and erase sequences. To lock the first page (page number 0), call

flashc_lock_page(0);

Locking is performed on a per-region basis, so the above statement does not lock only page zero, but all pages within the region. There are 16 pages per region so the above command locks also pages 1-15.

To unlock the page, call

flashc_unlock_page(0);

You can also use, flashc_lock_page_region() and flashc_unlock_page_region(). to lock and unlock pages by region. Furthermore, there is a function to check if the page is empty

flashc_isempty(0);

User page

The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be read and write by proprietary commands, which are

uint8_t buf[512];
flashc_read_userpage(buf);

and

flashc_save_userpage(buf);

To check whether the user page is empty or not call

flashc_userpage_isempty();

General purpose fuse bits

You can read all 32 fuse bits into 32 bit variable by using the following command

uint32_t fusebits;
fusebits = flashc_read_fusebits();

To write one bit true or false use this:

flashc_write_fusebit(uint16_t fusebit, bool value);

You can also write fuse bits by a byte at a time, like this

flashc_write_fusebyte(0, 0xff);
flashc_write_fusebyte(1, 0xff);
flashc_write_fusebyte(2, 0xff);
flashc_write_fusebyte(3, 0xff);

Now all fuse bits are written to 1. The first parameter is the byte address that can be 0-3 in a 32-bit word and the second one is the byte value.

General Periheral Input/Output, #include <aery32/gpio.h>

To initialize any pin to be output high, there is a oneliner which can be used

gpio_init_pin(AVR32_PIN_PC04, GPIO_OUTPUT|GPIO_HIGH);

The first argument is the GPIO pin number and the second one is for options. For 100 pin Atmel AVR32UC3, the GPIO pin number is a decimal number from 0 to 69. Fortunately, you do not have to remember which number represent what port and pin. Instead you can use predefined aliases as it was done above with the pin PC04 (5th pin in port C if the PC00 is the 1st).

The available pin init options are:

	
	GPIO_OUTPUT

	GPIO_INPUT

	GPIO_HIGH

	GPIO_LOW

	GPIO_FUNCTION_A

	
	GPIO_FUNCTION_B

	GPIO_FUNCTION_C

	GPIO_FUNCTION_D

	GPIO_INT_PIN_CHANGE

	GPIO_INT_RAISING_EDGE

	
	GPIO_INT_FALLING_EDGE

	GPIO_PULLUP

	GPIO_OPENDRAIN

	GPIO_GLITCH_FILTER

	GPIO_HIZ

These options can be combined with the pipe operator (boolean OR) to carry out several commands at once. Without this feature the above oneliner should be written with two lines of code:

gpio_init_pin(AVR32_PIN_PC04, GPIO_OUTPUT);
gpio_set_pin_high(AVR32_PIN_PC04);

Well now you also know how to set pin high, so you may guess that the following function sets it low

gpio_set_pin_low(AVR32_PIN_PC04);

and that the following toggles it

gpio_toggle_pin(AVR32_PIN_PC04);

and finally it should not be surprise that there is a read function too

state = gpio_read_pin(AVR32_PIN_PC04);

But before going any further, let’s quickly go through those pin init options. FUNCTION_A, B, C and D assing the pin to the specific peripheral function, see datasheet pages 45–48. INT_PIN_CHANGE, RAISING_EDGE and FALLING_EDGE enables interrupt events on the pin. Interrupts are trigged on pin change, at the rising edge or at falling edge, respectively. GPIO_PULLUP connects pin to the internal pull up resistor. GPIO_OPENDRAIN in turn makes the pin operate as an open drain mode. This mode is gererally used with pull up resistors to guarantee a high level on line when no driver is active. Lastly GPIO_GLITCH_FILTER activates the glitch filter and GPIO_HIZ makes the pin high impedance.

Usually you want to init several pins at once – not only one pin. This can be done for the pins that have the same port.

gpio_init_pins(porta, 0xffffffff, GPIO_INPUT); /* initializes all pins input */

The first argument is a pointer to the port register and the second one is the pin mask.

Note

Most of the combinations of GPIO init pin options do not make sense and have unknown consecuences.

Local GPIO bus

AVR32 includes so called local bus interface that connects its CPU to device-specific high-speed systems, such as floating-point units and fast GPIO ports. To enable local bus call

gpio_enable_localbus();

When enabled you have to operate with local GPIO registers. That is because, the convenience functions described above does not work local bus. To ease operating with local bus Aery32 GPIO module provides shortcuts to local ports by declaring lporta, b and c global pointers. Use these to read and write local port registers. For example, to toggle pin through local bus you can write

lporta->ovrt = (1 << 4);

Note

CPU clock has to match with PBB clock to make local bus functional

To disable local bus and go back to normal operation call

gpio_disable_localbus();

Interrupt Controller, #include <aery32/intc.h>

Before enabling interrupts define and register your interrupt service routine (ISR) functions. First write ISR function as you would do for any other functions

void myisr_for_group1(void) {
 /* do something */
}

Then register this function

intc_register_isrhandler(&myisr_for_group1, 1, 0);

Here the first parameter is a function pointer to your myisr_for_group1() function. The second parameter defines the which interrupt group calls this function and the last one tells the priority level.

Hint

Refer Table 12-3 (Interrupt Request Signal Map) in datasheet page 41 to see what peripheral belongs to which group. For example, RTC belongs to group 1.

When all the ISR functions have been declared it is time to initialize interrupts. Use the following init function to do all the magic

intc_init();

After initialization you can enable and disable interrupts globally by using these functions

intc_enable_globally();

intc_disable_globally();

Power Manager, #include <aery32/pm.h>

Power Manager controls integrated oscillators and PLLs among other power related things. By default the MCU runs on the internal RC oscillator (115 kHz). However, it’s often preferred to switch to the higher CPU clock frequency, so one of the first things what to do after the power up, is the initialization of oscillators. Aery32 Development Board has 12 MHz crystal oscillator connected to the OSC0. This can be started as

pm_start_osc(
 0, /* oscillator number */
 OSC_MODE_GAIN3, /* oscillator mode, see datasheet p.74 */
 OSC_STARTUP_36ms /* oscillator startup time */
);
pm_wait_osc_to_stabilize(0);

When the oscillator has been stabilized it can be used for the master/main clock

pm_select_mck(MCK_SOURCE_OSC0);

Now the CPU runs at 12 MHz frequency. The other possible source selections for the master clock are:

	MCK_SOURCE_OSC0

	MCK_SOURCE_PLL0

	MCK_SOURCE_PLL1

Use PLLs to achieve higher clock frequencies

Aery32 devboard can run at 66 MHz its fastest. To achieve these higher clock frequencies one must use PLLs. PLL has a voltage controlled oscillator (VCO) that has to be initialized first. After then the PLL itself can be enabled.

Important

PLL VCO frequency has to fall between 80–180 MHz or 160–240 MHz with high frequency disabled or enabled, respectively. From these rules, one can realize that the smallest available PLL frequency is 40 MHz (the VCO frequency can be divided by two afterwards).

pm_init_pllvco(
 pll0, /* pointer to pll address */
 PLL_SOURCE_OSC0, /* source clock */
 11, /* multiplier */
 1, /* divider */
 false /* high frequency */
);

	If div > 0 then f_vco = f_src * mul / div

	If div = 0 then f_vco = 2 * mul * f_src

The above initialization sets PLL VCO frequency of PLL0 to 132 MHz – that’s 12 MHz * 11 / 1 = 132 MHz. After then PLL can be enabled and the VCO frequency appears on the PLL output. Remember that you can now also divide VCO frequency by two.

pm_enable_pll(pll0, true /* divide by two */); /* 132 MHz / 2 = 66 MHz */
pm_wait_pll_to_lock(pll0);

Finally one can change the master clock (or main clock) to be clocked from the PLL0 that’s 66 MHz.

pm_select_mck(MCK_SOURCE_PLL0);

Fine tune the CPU and Periheral BUS frequencies

By default the clock domains, that are CPU and the Peripheral Busses (PBA and PBB) equal to the master clock. To fine tune these clock domains, the PM has a 3-bit prescaler, which can be used to divide the master clock, before it has been used for the specific domain. Using the prescaler you can choose the CPU clock between the OSC0 frequency and 40 MHz, that was the lower limit of the PLL. Assuming that the master clock was 66 MHz, the following function call changes the CPU and the bus frequencies to 33 MHz:

pm_setup_clkdomain(1, CLKDOMAIN_ALL);

The first parameter defines the prescaler value and the second one selects the clock domain which to set up. Here all the domains are set to equal. The formula is f_mck / (2^prescaler). With the prescaler selection 0, the prescaler block will be disabled and the selected clock domain equals to the master clock that was the default setting.

The possible clock domain selections are

	
	CLKDOMAIN_CPU

	CLKDOMAIN_PBA

	
	CLKDOMAIN_PBB

	CLKDOMAIN_ALL

Important

PBA and PBB clocks have to be less or equal to CPU clock. Morever, the flash wait state has to been taken into account at this point. If the CPU clock is over 33 MHz, the Flash controller has to be initialized with one wait state, like this flashc_init(FLASH_1WS, true). If the CPU clock speed is less or equal than 33 MHz, zero wait state is the correct setting for the flash.

Hint

You can combine the clock domain selections with the pipe operator, like this CLKDOMAIN_CPU|CLKDOMAIN_PBB. With this selection the PBA clock frequency won’t be changed, but the CPU and PBB will be set up accordingly.

General clocks

PM can generate dedicated general clocks. These clocks can be assigned to GPIO pins or used for internal peripherals such as USB that needs 48 MHz clock to work. To offer this 48 MHz for the USB peripheral, you have to initialize either of the PLLs to work at 96 MHz frequency. As the PLL0 is commonly used for the master clock, PLL1 has been dedicated for general clocks. First initialize the VCO frequency and then enable the PLL

pm_init_pllvco(pll1, PLL_SOURCE_OSC0, 16, 1, true); /* f_pll1_vco = 192 MHz */
pm_enable_pll(pll1, true); /* f_pll1 = 96 MHz */
pm_wait_pll_to_lock(pll1);

After then init and enable the USB generic clock

pm_init_gclk(
 GCLK_USBB, /* generic clock number */
 GCLK_SOURCE_PLL1, /* clock source for the generic clock */
 1 /* divider */
);
pm_enable_gclk(GCLK_USBB);

	If div > 0 then f_gclk = f_src/(2*div)

	If div = 0 then f_gclk = f_src

There are five possible general clocks to be initialized:

	
	GCLK0

	GCLK1

	GCLK2

	
	GCLK3

	GCLK_USBB

	GCLK_ABDAC

GCLK_ABDAC is for Audio Bitstream DAC, GCLK0, GCLK1, etc. can be attached to GPIO pin, so that you can easily clock external devices. For example, to set generic clock to be at the output of GPIO pin, first init the desired GPIO pin appropriately and then enable the generic clock at this pin. You can do this, for example, to check that USB clock enabled above is correct

gpio_init_pin(AVR32_PIN_PB19, GPIO_FUNCTION_B);
pm_init_gclk(GCLK0, GCLK_SOURCE_PLL1, 1);
pm_enable_gclk(GCLK0);

Hint

Generic clock can be changed when its running by just initializing it again. You do not have to disable it before doing this and you do not have to enable it again.

Save power and use only the peripherals that you need

By default all modules are enabled. You might be interested in to disable modules you are not using. This can done via the peripheral clock masking. The following example disables clocks from the TWI, PWM, SSC, TC, ABDAC and all the USART modules

#define PBAMASK_DEFAULT 0x0F
pm->pbamask = PBAMASK_DEFAULT;

Remember to wait when the change has been completed

while (!(pm->isr & AVR32_PM_ISR_MSKRDY_MASK));
 /* Clocks are now masked according to (CPU/HSB/PBA/PBB)_MASK
 * registers. */

How much is the clock?

Sometimes the current clock frequencies has to be checked programmatically. To get the main clock use the pm_get_fmck() function

main_hz = pm_get_fmck();

Respectively, the clock domains can be fetched like this

cpu_hz = pm_get_fclkdomain(CLKDOMAIN_CPU);
pba_hz = pm_get_fclkdomain(CLKDOMAIN_PBA);
pbb_hz = pm_get_fclkdomain(CLKDOMAIN_PBB);

These functions assume that OSC0 and OSC1 frequencies are 12 MHz and 16 MHz, respectively. If other oscillator frequencies are used, change the default values by editing CXXFLAGS in aery32/Makefile.

Pulse Width Modulation, #include <aery32/pwm.h>

Start by initializing the PWM channel which you want to use

pwm_init_channel(2, MCK);

The above initializer sets channel’s two PWM frequency equal to the main clock and omits the duration and period for default values. The default values for the duration and period are 0 and 0xFFFFF, respectively. If you like to start the channel with different values, you could have defined those too like this

pwm_init_channel(2, MCK, 50, 100);

This gives you duty cycle of 50% from start. The maximum value for both the duration and the period is 0xFFFFF. It is also worth noting that when the period is set to its maximum value, the channel’s duty cycle can be set most accurately.

The above initializers set the channel’s frequency equal to the main clock. The other possible frequency selections are

	
	MCK_DIVIDED_BY_2

	MCK_DIVIDED_BY_4

	MCK_DIVIDED_BY_8

	MCK_DIVIDED_BY_16

	
	MCK_DIVIDED_BY_32

	MCK_DIVIDED_BY_64

	MCK_DIVIDED_BY_128

	MCK_DIVIDED_BY_256

	
	MCK_DIVIDED_BY_512

	MCK_DIVIDED_BY_1024

	PWM_CLKA

	PWM_CLKB

PWM_CLKA and PWM_CLKB are two extra PWM clock sources. The difference to other sources is an additional linear divider block that comes after the MCK prescaler. To initialize the divider block for the PWM_CLKA and PWM_CLKB call

pwm_init_divab(MCK, 10, MCK_DIVIDED_BY_2, 10);

Now PWM_CLKA has the frequency of MCK / 10 Hz and PWM_CLKB is MCK / 2 / 10 Hz. If you don’t care about CLKB, you can omit the last two of the parameters like this

pwm_init_divab(MCK, 10);

Note

If the divider of PWM_CLKA or PWM_CLKB has been set zero, then the PWM clock will equal to the MCK, MCK_DIVIDED_BY_2, etc. Whatever was the chosen prescaler. So it does not make sense to set the divider of the extra PWM clock zero, because then you don’t have any extra clock selection.

Setting up PWM mode

Before enabling the initialized PWM channel or channels, you may like to setup the channel mode to set PWM alignment and polarity

pwm_setup_chamode(2, LEFT_ALIGNED, START_HIGH);

The alignment (left or center, LEFT_ALIGNED and CENTER_ALIGNED, respectively) defines the shape of PWM function, see datasheet page 680. The polarity defines the polarity of the duty cycle. With START_HIGH, the duty cycle is 100% when duration / period of the PWM function gives 1. With START_LOW you would get 100% duty cycle when the duration / period is 0.

Enabling and disabling the PWM

PWM is enabled and disabled by channels. Several channels can be enabled at once to get synchronized output. To enable channels two and four call

pwm_enable((1 << 2)|(1 << 4));

Same goes for the disabling the channels. The following call will disable the channel two

pwm_disable(1 << 2);

The parameter of the enable and disable functions is a bitmask of the channels to be enabled or disabled. There is also function to check if the channel has been enabled already. The following snippet will do something if the channel two was already enabled

if (pwm_is_enabled(1 << 2)) {
 /* Do something */
}

Modulating the PWM output waveform

You can modulate the PWM output waveform when it is active by changing its duty cycle like this

pwm_update_dutycl(2, 0.5);

The above function call will update the channel’s two duty cycle to 50%. In case you want to specify completely new values for the period and duration use these two functions

pwm_update_period(2, 0x1000);
pwm_update_duration(2, 0x10);

Furthermore, to keep PWM output at the desired state for the amount of periods, before changing its state again, use the wait function. This also allows you to do updates from the beginning of the next period and thus avoiding to overwrite the value too soon. For example, to wait 100 periods on channel two call

pwm_wait_periods(2, 100);

With the combination of the update functions and the wait function, you can make a smoohtly blinking LED, just like this

uint8_t channel = 2;
uint32_t duration = 0;
uint32_t period = 0x1000;

for (;;) {
 for (; duration < period; duration++) {
 pwm_update_duration(channel, duration);
 pwm_wait_periods(channel, 500);
 }
 for (; duration > 0; duration--) {
 pwm_update_duration(channel, duration);
 pwm_wait_periods(channel, 500);
 }
}

Note

Duration has to be smaller or equal to period.

Real-time Counter, #include <aery32/rtc.h>

Real-time counter is for accurate real-time measurements. It enables periodic interrupts at long intervals and the measurement of real-time sequences. RTC has to be init to start counting from the chosen value to the chosen top value. This can be done in this way

rtc_init(
 RTC_SOURCE_RC, /* source oscillator */
 0, /* prescaler for RTC clock */
 0, /* value where to start counting */
 0xffffffff /* top value where to count */
);

The available source oscillators are:

	RTC_SOURCE_RC (115 kHz RC oscillator within the AVR32)

	RTC_SOURCE_OSC32 (external low-frequency xtal, not assembled in Aery32 Devboard)

When initialized, remember to enable it too

rtc_enable(false);

The boolean parameter here, tells if the interrupts are enabled or not. Here the interrupts are not enabled so it is your job to poll RTC to check whether the top value has been reached or not.

Serial Peripheral Bus, #include <aery32/spi.h>

AVR32 UC3A1 includes to separate SPI buses, SPI0 and SPI1. To initialize SPI bus it is good practice to define pin mask for the SPI related pins. Refering to datasheet page 45, SPI0 operates from PORTA:

	PA07, NPCS3

	PA08, NPCS1

	PA09, NPCS2

	PA10, NPCS0

	PA11, MISO

	PA12, MOSI

	PA13, SCK

So let’s define the pin mask for SPI0 with NPCS0 (Numeric Processor Chip Select, also known as slave select or chip select):

#define SPI0_GPIO_MASK ((1 << 10) | (1 << 11) | (1 << 12) | (1 << 13))

Next we have to assing these pins to the right peripheral function that is FUNCTION A. To do that use pin initializer from GPIO module:

gpio_init_pins(porta, SPI0_GPIO_MASK, GPIO_FUNCTION_A);

Now the GPIO pins have been assigned appropriately and we are ready to initialize SPI0. Let’s init it as a master:

spi_init_master(spi0);

The only parameter is a pointer to the SPI register. Aery32 declares spi0 and spi1 global pointers by default.

Hint

If the four SPI CS pins are not enough, you can use CS pins in multiplexed mode (of course you need an external multiplexer circuit then) and expand number of CS lines to 16. This can be done by bitbanging PCSDEC bit in SPI MR register after the initialization:

spi_init_master(spi0);
spi0->MR.pcsdec = 1;

When the SPI peripheral has been initialized as a master, we still have to setup its CS line 0 (NPCS0) with the desired SPI mode and shift register width. To set these to SPI mode 0 and 16 bit, call the npcs setup function with the following parameters

spi_setup_npcs(spi0, 0, SPI_MODE0, 16);

The minimum and maximum shift register widths are 8 and 16 bits, respectively, but you can still use arbitrary wide transmission.

Hint

Chip select baudrate is hard coded to MCK/255. To make it faster you can bitbang the SCRB bit in the CSRX register, where X is the NPCS number:

spi_setup_npcs(spi0, 0, SPI_MODE0, 16);
spi0->CSR0.scbr = 32; /* baudrate is now MCK/32 */

Hint

Different CS lines can have separate SPI mode, baudrate and shift register width.

Now we are ready to enable SPI peripheral

spi_enable(spi0);

There’s also function for disabling the desired SPI peripheral, spi_disable().

To read and write data use the SPI transmit function

uint16_t rd;
rd = spi_transmit(spi0, 0, 0x55);

The above call to spi_transmit writes 0x55 to SPI0 using NPCS0 slave (or chip) select pin. Notice that spi_transmit() writes and reads the SPI bus simultaneusly. If you only want to read data, just ignore write data by sending dummy bits.

Here is the complete code for the above SPI initialization and transmission:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	#include "board.h"
#include <aery32/gpio.h>
#include <aery32/spi.h>

using namespace aery;

#define SPI0_GPIO_MASK ((1 << 10) | (1 << 11) | (1 << 12) | (1 << 13))

int main(void)
{
 uint16_t rd; /* received data */

 init_board();

 gpio_init_pins(porta, SPI0_GPIO_MASK, GPIO_FUNCTION_A);
 spi_init_master(spi0);
 spi_setup_npcs(spi0, 0, SPI_MODE0, 16);
 spi_enable(spi0);

 for (;;) {
 rd = spi_transmit(spi0, 0, 0x55);
 }

 return 0;
}

Sending arbitrary wide SPI data

spi_transmit() supports arbitrary wide SPI transmits through its optional last parameter named as islast. This param indicates if the chip select line should be left low or can be pulled high. Otherway around it tells whether the current transmission was the last one or not. Thus the param is called islast. By default islast is set true and the CS line rises immediately when the last bit has been written. If islast is defined false, CS line is left low for the next transmission that should occur immediately after the previous one. This feature allows SPI to operate with arbitrary wide shift registers. For example, to read and write 24 bit wide SPI data you can do this:

uint32_t rd;

spi_setup_npcs(spi0, 0, SPI_MODE0, 8);

rd = spi_transmit(spi0, 0, 0x55, false);
rd |= spi_transmit(spi0, 0, 0xf0, false) << 8;
rd |= spi_transmit(spi0, 0, 0x0f, true) << 16; /* Complete. Asserts the chip select */

Two-wire (I2C) Interface Bus, #include <aery32/twi.h>

TWI interface is initialized as a master like this

twi_init_master();

By default the initializer sets the bus’ SCL frequency to 100 kHz. The maximum supported frequency is 400 kHz. This can be set up with twi_setup_clkwaveform() after you have called the init function. For example, to set SCL to 400 kHz with 50% dutycycle, call

twi_setup_clkwaveform(1, 0x3f, 0x3f);

The first parameter is the clock divider. The second and third one define the dividers for the clock low and high states, respectively. Altering these divider values for clock high and low states you can modify the SCL waveform. However, you most likely want to set those equal to get 50% dutycycle for the clock.

Note

TWI module does not have an enable function as other modules. The module is enabled when TWI pins are initialized with GPIO module:

#define TWI_PINS ((1 << 29) | (1 << 30))
gpio_init_pins(porta, TWI_PINS, GPIO_FUNCTION_A | GPIO_OPENDRAIN);

Warning

Important! Don’t forget to connect the appropriate size external pull-up resistors to SDA and SCL pins. Try for example 4k7 value resistors. The exact optimal value depends on the SCL and the parasitic capacitance of the bus.

Read and write operations

The read and write operations for a single byte works like this

uint8_t rd;

twi_write_byte(0x04);
twi_read_byte(&rd);

Both functions return the number of successfully written or read bytes. So for one byte read/write operation the return value would be 0 on error and 1 on success.

To read and write multiple bytes use twi_read/write_nbytes(), like this

uint8_t wd[3] = { 0x02, 0x04, 0x06 };
uint8_t rd[3];

twi_write_nbytes(wd, 3);
twi_read_nbytes(rd, 3);

Using internal device address

Both read and write functions can take an optional internal device address in their last param. Internal device address is the slave’s internal register where data is written or read from. For example, the following snippet writes a byte 0x04 to the slave register (or in other words slave’s internal address) 0x80.

uint8_t byte = 0x04;
uint8_t iadr = 0x80;

twi_write_byte(byte, iadr);

When optional address has been given the same address is used in every read and write operations that follows the previous operation even if the address is omitted from the function call. To clear this behaviour, call twi_clear_internal_address().

If you want to use a wider than 8-bit internal device addresses, you have to indicate the address lenght via additional third parameter. For example to use 2 bytes long address, you may call the write function like this

uint8_t byte = 0x04;
uint16_t iadr = 0x8080;

twi_write_byte(byte, iadr, 2);

The largest supported internal device address length is three bytes long.

Universal Synchronous/Asynchronous Receiver/Transmitter (USART), #include <aery32/usart.h>

USART module can be used for several kind of communication. The RS-232 serial
communication with a personal computer (PC) is likely the most common one. To
initialize the USART0 for serial communication call

usart_init_serial(usart0, USART_PARITY_NONE, USART_STOPBITS_1);

Serial communication initialized with no parity and 1 stop bits is the
default setup for most of the devices, so you may omit the last two
parameters if you like. Other options are EVEN, ODD, MARKED and
SPACE for parity, and 1p5 and 2 for stop bits.

After then you have to set up the baudrate. The baudrate is derived from
clock of the peripheral bus B (PBA) or at external pin. This source clock
is then diveded in divider for integer part and additionally for fractional
part to achieve even smaller baudrate error. Assuming that the PBA bus
speed is 66 MHz we have to divide it by 71 to get the baud rate of 115 200
bit/s (error 0.8%).

usart_setup_speed(usart0, USART_CLK_PBA, 71, 0);

The last parameter is the divider for the fractional part which could have
been also omitted because it was set to zero. We could have set the
fractional part here to 5 to get even smaller baud rate error (0.015%).

At last you have to enable RX and TX channels separately for receiving
and transmitting bytes

usart_enable_rx(usart0);
usart_enable_rx(usart0);

Transmitting bytes

Sending a char type byte is as convenient as calling

usart_putc(usart0, 'b');

To transmit strings you can use puts like this

usart_puts(usart0, "hello");

To add a new line add \n to the end of your string, e.g. "hello\n".
In Windows you may also like to add carrier return character, which is \r.
With that the ‘hello’ string would look like this "hello\n\r".

You can also use an intrinsic write function for more general use

usart_write(usart0, buf, n);

where buf is the pointer to the buffer and n is the number of
elements to be written.

Receiving bytes

To get a single char just call

char b = usart_getc(usart0);

To get multiple chars you have to declare a read buffer

#define BUFSIZE 100
char buf[BUFSIZE] = "";

usart_gets(buf, BUFSIZE);

This snippet of code will receive a string into read buffer called buf.
Maximum of 100 bytes are received. The usart_gets() function will
return when the terminator character has been read. This character is not
included into buffer. By default newline \n is used, but you can use
other by giving it via the last parameter. For example, to use \r call

usart_gets(buf, BUFSIZE), '\r');

For more general receiving, use the intrinsic read function

int input;
usart_read(usart0, &input);

int input[100];
usart_read(usart0, input, 100);

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

String functions, #include <aery32/string.h>

Generally you should use sprintf/sscanf family of functions to do string manipulations but sometimes it would be nice to use some smaller alternatives to save memory. In addition, you may like to avoid using these standard functions because of some nasty side effects like stack overflown etc.

Integer number to string

Use this snippet to convert integer number to string

char str[10] = "";
itoa(100, str);

itoa() returns the pointer to the str so you can use it with print functions. If you like to know how many characters were written in conversion, you can save the number into additional variable, like this

int n;
char str[10] = "";
itoa(100, str, &n);

utoa() works similarly with itoa() but only for unsigned integers.

Double to string

This example converts pi to string with 8 decimal numbers.

char str[10] = "";
dtoa(3.14159265, 8, str);

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

UC3A0/1 system clocks described

[image: UC3A0/1 system clocks described]
UC3A0/1 chips have quite a complex clock system as it can be seen from the figure. At start-up the UC3 runs at its internal RC oscillator that’s 115 kHz. This means that the Main clock has been clocked from this RC oscillator and that the CPU frequency equals to 115 kHz. That’s because by default the clock domain prescaler has been disabled. This also means that all the other clock domains, that are HSB, PBA and PBB, runs at 115 kHz frequency as well.

Main clock means the CPU clock

It’s important to understand that all the clock domains are derived from the Main (or Master) clock. The main clock can be clocked from couple of other sources in addition to the RC oscillator. It can be clocked from the OSC0 or PLL0. PLL0 clock frequency can equal to its VCO frequency or VCO/2. As the PLL can have a very high clock frequency it’s important to set the prescaler of the clock domains properly. The maximum frequency is 66 MHz. It’s also good to know that CPU and HSB domains must equal each other and that the PBA and PBB frequencies have to be smaller than or equal to CPU.

PLLs can be driven only from the external crystal oscillators and its output can be used, in addition to the Main clock, for the Generic clocks as well. Generic clocks are multi-purpose clocks. You can use those, for example, to clock your external devices by connecting the clock pin of the device to the proper GPIO pin that can act as an output for the Generic clock. The internal USB and ABDAC peripherals get their clock from the Generic clock module too.

Read more about how to operate with these clocks from the Power Manager within the Modules section.

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Contributor’s guide

The development of Aery32 Framework happens in GitHub, which is a web-based hosting service that use the Git revision control system. To contribute the code you have to have a GitHub account. After that you can fork [http://help.github.com/fork-a-repo/] Aery32 repository and start contribute by sending pull request [http://help.github.com/send-pull-requests/].

GitHub has a good beginners guide about how to set up Git in Windows [http://help.github.com/win-set-up-git/].

Sending a pull request (creating a patch)

Fixes are sent as pull requests [http://help.github.com/send-pull-requests/]. Before you start fixing the Aery32 library, create a new branch and code your patch in this new branch. If there is a reported issue you are fixing, name the branch according to the GitHub issue number, e.g. gh-02.

The benefit of this approach is that you can have plenty of fixes which are isolated from each others, especially from the master branch.

Coding standards

Follow Linux kernel coding style [https://github.com/torvalds/linux/blob/master/Documentation/CodingStyle].

#include <avr32/io.h>

typedef struct Foo Foo;
typedef struct Bar Bar;

struct Foo {
 Bar *bar;
};

struct Bar {
 Foo *foo;
};

/**
 * Initializes io pins (define the function briefly at the first line)
 * \param allinput If true all pins initialized as inputs
 *
 * More detailed description comes here. Remember to use param names
 * within the function prototypes too.
 */
void init_io(bool allinput);

void init_io(bool allinput) /* Layout functions like this */
{
 int i;

 /* Use space between the syntactic keywords and opening parenthesis */
 for (i = 0; i < 2; i++) {
 AVR32_GPIO.port[i].gpers = 0xffffffff;

 if (allinput == 0) /* Do not use curly braces if not needed */
 AVR32_GPIO.port[i].oders = 0xffffffff;
 else
 AVR32_GPIO.port[i].oderc = 0xffffffff;
 }
}

int main(void)
{
 char *c;
 Foo foo;
 Bar bar;

 bar.foo = &foo;

 /*
 * This is multiline comment that reminds you not to use compound literals
 * in Aery32 library, because avr32-g++ does not support those. What's
 * compound literal? This is: bar = (Bar) {.foo = &foo};
 */

 for (;;) { /* This is how infinite loops are written */
 }

 return 0;
}

Writing the documentation

The documentation is constructed by Sphinx. Sphinx is a Python documentation generator but works fine for C as well.

The source files of this documentation are located at the separate GitHub repository, https://github.com/aery32/aery32-refguide. To build local html version of this documentation use make:

make html

The following commands assume you have Sphinx installed – if not, see the installation instructions below. Now browse to source/ directory and open the index.rst. This is the master document serving as a welcome page and “table of contents tree”. To edit these source files just open the file in your favorite editor and be sure to edit in UTF-8 mode. To understand reSt syntax start from http://sphinx.pocoo.org/rest.html.

Installing Sphinx

In Windows

Case 1: I do have Python already installed

If you do have Python installed already, then you likely have setuptools installed as well. In this case install Sphinx with easy_install. Fire your command prompt (Win+R cmd) and command:

easy_install -U Sphinx

Otherwise follow steps below to install Python first and then Sphinx.

Case 2: I don’t have Python installed

Note

We do not install setuptools here and thus do not use easy_install to install Sphinx. However you will get it installed along Sphinx installer and it is recommended to use it later when installing other Python packages.

	Create temporary directory (e.g. myfoo) where to download the following things:
	Python 2.7.x from http://python.org/download/

	Sphinx 1.1.2 from http://pypi.python.org/pypi/Sphinx

	When the both download processes have been completed, you should have these two files:
	python-2.7.2.msi or python-2.7.2.amd64.msi if you downloaded 64-bit version

	Sphinx-1.1.2.tar.gz

	First install Python by double clicking Python installer

	After successful installation of Python, untar Sphinx-1.1.2.tar.gz into temporary directory
	The exctarction process creates the Sphinx-1.1.2 directory, change to that directory and double click setup to install Sphinx

	Once the Sphinx installation is complete, you will find sphinx-xxx executables in your Python Scripts subdirectory, C:\Python27\Scripts. Be sure to add this directory to your PATH environment variable. As you can see, this directory includes now also easy_install executable, which you should use later to install other Python packages.

	You can now remove the temporary directory

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aery32 v0.5.0 documentation

Eclipse Juno

Installation

First make sure that you have Java runtime environment (Java JRE) installed. You can download Java [http://www.java.com/en/download/manual.jsp] from Oracle. After then download Eclipse IDE for C/C++ Developers [http://www.eclipse.org/downloads/] from Eclipse’s homepage. Be sure to select the same bit version than your JRE.

To continue browse to the folder where you downloaded Eclipse and unzip the file there. Now you have a folder called eclipse. You can just browse to that folder and double click eclipse.exe to start Eclipse. However, before doing that you may like to move the eclipse folder some other place (away from your download directory) and then make a shortcut to eclipse.exe.

That was all about the installation of Eclipse.

First start

Eclipse stores your projects in a folder called a workspace. You may have several workspaces around your hard disk. Each time you start Eclipse the location of the workspace has been asked. If you like to work in one workspace only, check the box that says Use this as the default and do not ask again.

[image: Select workspace in Eclipse Juno]
When Eclipse has been started, change the perspective from Java to C/C++ by clicking the Open perspective icon from the right upper corner. Then select C/C++ and press OK.

[image: Open perspective in Eclipse Juno]
It is also good idea to use UTF-8 text file encoding and Unix style new text file line delimiter (Aery32 Framework uses these settings). You can change these preferences globally for the workspace you are working from Window / Preferences. From the left-hand side list select General / Workspace.

[image: How to set UTF-8 text file encoding in Eclipse Juno]
Lastly get rid of the welcome screen by closing it. You can open it again, if you like from Help / Welcome

[image: Close welcome screen of Eclipse Juno]

Import Aery32 Framework as a Makefile project

Aery32 Framework can be imported into Eclipse as a Makefile project. Start by creating a new project File / New / Makefile Project ..., or press Alt-Shift-N.

[image: Create a new Makefile Project in Eclipse Juno]
Browse to the location of Aery32 Framework by using Browse... button. Eclipse will name the project according to the directory, but you can change it whatever you like. It is important to choose <none> for the Toolchain for Indexer.

[image: Import existing code in Eclipse Juno]
Now you have a project created and you can open e.g. the main.cpp from the Project Explorer. Right-hand side you have panels for the source file Outline and the project Make Targets.

[image: This is how it looks after creating a Makefile project in Eclipse Juno]

Setting Paths and Symbols

To get Eclipse indexer working with the AVR32 Toolchain and Aery32 include files, you have to set up paths and symbols. Open Project / Properties and then C/C++ General / Paths and Symbols. Add the following include paths. When you are adding the aery32 include path be sure to check Is a workspace path box too.

[image: Setting up include paths for AVR32 and Aery32 Framework in Eclipse Juno]
Next open Symbols tab and add the following symbols.

[image: Setting up symbols for AVR32 in Eclipse Juno]

Setting Makefile targets

Makefile targets can be added from the right-hand side panel. Here I have added all targets needed for compiling and programming the board along additional supportive targets. You can run the target by double clicking it.

[image: Setting up Makefile targets for Aery32 Framework in Eclipse Juno]

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	
 previous |

 	Aery32 v0.5.0 documentation

Sublime Text 2

Note

These instructions are written for Windows but should work similarly in Linux and Mac OS X. And don’t miss the Aery32 plug-in for Sublime Text 2.

Aery32 Framework comes with the default Sublime Text 2 [http://www.sublimetext.com/2] project file which you can use straight away. The quickest way to start the project is to browse to the project directory and open aery32.sublime-project file using the right click and selecting Open with Sublime Text 2.

[image: Open ST2 project file with right click]
After then change the default build system to Aery32 from Tools/Build System.

[image: Change ST2 build system to Aery32]

Shortcut keys

Use Ctrl+B and Ctrl+Shift+B shortcut keys to compile the project and to program the board, respectively.

[image: The board is programmed via ST2]
For other make targets press Ctrl+Shift+P and write build. Then select the desired target from the list.

[image: Building with debug statements in ST2]
When you want to open a file, let’s say aery32/aery32/gpio.h, press Ctrl+P and write gpio. Then select the file from the list. Of course you can also use the folder tree from the left-hand side if you like. Btw. it can be switched on and off with Ctrl+K+B.

[image: Open files quickly in ST2]

Autocomplete with SublimeClang

SublimeClang [https://github.com/quarnster/SublimeClang] provides a neat autocompletion for Aery32 project. With this plugin you don’t have to remember all the function names and their parameters completely. Just write the beginning of the function, for example gpio_t, and you get a list of functions. Press Ctrl+Space to move on the list and Tab to select the function. When you have set the first param, you can press Tab again to jump to the next one.

[image: Example of ST2 autocomplete with SublimeClang]
SublimeClang prerequisites for the clang static analyzer is to have clang installed and set in your path. The other functionality works without having the clang binaries installed. Here we only use the “other functionalities” and thus do not need clang. So install SublimeClang as instructed in its README without paying any attention toward clang. In Linux you can also skip the additional prerequisities.

Now open aery32.sublime-project and add the following settings. If you are on Linux or Mac OS X, alter the AVR Toolchain installation directory appropriately. The preprocessor definitions within the sublimeclang_options, like -D__AVR32_UC3A1128__=1, are the few that we have found to be essentials. If you use Aery32 Sublime Text 2 plug-in [https://github.com/aery32/sublime-aery32] to create a new project, other definitions are added too so the list will be far longer.

"sublimeclang_enabled": True,
"sublimeclang_dont_prepend_clang_includes": True,
"sublimeclang_show_output_panel": True,
"sublimeclang_hide_output_when_empty": True,
"sublimeclang_show_status": True,
"sublimeclang_show_visual_error_marks": True,
"sublimeclang_options": [
 "-Wall", "-Wno-attributes",
 "-ccc-host-triple", "mips",
 "-I${project_path:aery32}",
 "-include", "${project_path:settings.h}",
 "-IC:/Program Files (x86)/Atmel/AVR Tools/AVR Toolchain/avr32/include",
 "-IC:/Program Files (x86)/Atmel/AVR Tools/AVR Toolchain/lib/gcc/avr32/4.4.3/include",
 "-IC:/Program Files (x86)/Atmel/AVR Tools/AVR Toolchain/lib/gcc/avr32/4.4.3/include-fixed",
 "-IC:/Program Files (x86)/Atmel/AVR Tools/AVR Toolchain/lib/gcc/avr32/4.4.3/include/c++",
 "-IC:/Program Files (x86)/Atmel/AVR Tools/AVR Toolchain/lib/gcc/avr32/4.4.3/include/c++/avr32",
 "-D__GNUC__=4",
 "-D__AVR32_UC3A1128__=1",
 "-D__INT_MAX__=2147483647",
 "-D__SHRT_MAX__=32767",
 "-D__SCHAR_MAX__=127"
]

Aery32 plug-in

With Aery32 plug-in for Sublime Text 2 [https://github.com/aery32/sublime-aery32] you can easily create new projects. All the above setup process is automated for you. Just install the plugin via the Package Control plug-in (manual install also possible) and start using it as any other ST2 plug-in. See https://github.com/aery32/sublime-aery32#installation.

[image: Aery32 Sublime Text2 plug-in, create new project]

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 Navigation

 	
 index

 	Aery32 v0.5.0 documentation

Index

 Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.5.0

 	0.4.2

 	0.4.1

 	0.3.0

 	0.2.1

 	0.1.2

 _images/st2_open_file_quickly.png
FOLDERS

¥ My Aen32 Project D *

> examples gpio

gtignore S e
ravis ymi aen32/gpio.cop
B 276 gpion
ublime.workspace e ensalopian
board.cpp &
board 276 gpio_localbus.cpp
ucensema examples/gpio_loclbus.op
main.cop
Makefile
READMEmd
#ifncet _ AERYI2 GPIO M
-
<
E

Line 1, Column 1 =

_images/eclipse_juno_select_workspace.png
Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folderto use for this session.

Workspace: [ChUser Kmwrkapace <[Browsen

Use this as the default and do not ask again

o J o]

_static/minus.png

_images/st2_build_debug.png
FOLDI
¥ My Aen32 Project
» aens
> eamples
gitignore
travisym :

aen32.map

aeny32.sublime-project 5
aen32.sublime-workspace x
board.cop
boardn

LICENSEmd

Makefile
README.md

Line 21, Column 1

main.cop

*
e

3

e Build:

b
B build

names Byt

t main(vo Build:

Build
Cancel
Build:
Build:
Build:
Build:

Clean
Debug

Rebuild Ly
Run

Clean all

Build: Quality assurance

Build: Rebuild all

Set Syntax: NANt Build File

Tabsees

ctisB
Ctri+Break

ctri=shift-B

_images/eclipse_juno_open_cdt_perspective.png
3 Openperpectie B)
B ooy |

E5CVS Repository Exploring
#5Debug

2 Git Repository Exploring
e

5 hava Browsing

%2 Java Type Hierarchy

B TTng Kemel
©Planning

EBRemote System Bxplorer
(2 Resource

E0Team Synchronizing
FTracing

search.html

 Navigation

 		
 index

 		Aery32 v0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Muiku Oy.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.5.0

 		0.4.2

 		0.4.1

 		0.3.0

 		0.2.1

 		0.1.2

_static/comment-close.png

_images/uc3_clocks.png
oScg, 0sc

_static/up-pressed.png

_images/eclipse_juno_add_includes.png
2 Properties for aery32

Paths and Symbols coee
» Resource
Builders
» C/Ces Buitd Configuraion [Defaut [Actwe] V|
4 C/Cor General
» Code Analysis
Documentation (2 Includes [# Symbols [= Libraries | & Library Paths | G5 Source Location | (= Output Location | £ References|
File Types
Formatter Languages Include directories
fndeer Assembly (2 S{ProgramFilestxBE)AtmeNAVR Tools\AVR Toolchain\avr32\include.
Language Mappings GNUC (2 ${ProgramFiles(xB6))\AtmeNAVR Tools\AVR Toolchain\lib\gcc\avr32\4.4.3\include
i‘“‘ and, SY';""::* . GNU G+ 2 ${ProgramFiles(xB6)\AtmeNAVR Tools\AVR Toolchain\ib\gcc\avr32\4.4.3\include-fixed
ij:’;:;f:ﬁ" N (2 ${ProgramFiles(x86))\Atme\AVR Tools\AVR Toolchain\lib\gcc\avr32\4.4.3\include\c+ +\avr32
- (£ ${ProgramFiles(x86)\Atmel\AVR Tools\AVR Toolchain\lib\gcc\avr32\4.4.3\include\c+ +
Run/Debug Settings Eiiniien
1 Task Repository [aery32/aery: Move U
fting ove Up.
Move Down

®

_images/avr32_flash_structure.png
<
n
e
n
2
D
(¢}

[4

LASH PA GE WO RO

i

" | == byte eyte b B
m/ — bes
T LS ¢ =R s
— | <

: Sl2 boytes
|- = \:-8 worns

=% L!

“‘\ 6 b s
‘\
—_—

_images/st2_autocomplete.png
FOLDERS

¥ My Aen32 Project mein-ep.

#include "board.h”

DexEa #include <aery32/all.h>
[
e R
—— ety
aery32.sublime-project {
aen2.sublme workspace
e
o o
ucensema
s
Vaktie
README.md G
wioy
1 gpio_togele pin(uints_t pinnum)
—— pin(uints_¢ pinmum
) i high(uints.¢ pimu

gpio_set_pin_

gpio_init_pir

B T

(uints_t pinnum

11

gpio_init_pin(uints_t pinnum, int optio

t

Tabsies

=

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_images/eclipse_juno_create_makefile_project.png
C/C++ - Ecli
File] Edit Source Refactor Navigate Search Project Run Window Help

New Alt+Shift=N » Makefile Project with Existing Code N
OpenFie.. Cox Prject | o | @ETD)
Close CtrleW CProject om ™ ==
Closel Coteseon | £ Pt °
Save Ctrl+S. ol %) An outline is not available.
- Comertto C/Cr Project(dds C/Cr Noture)

Save All Ctrl+Shift+S o
- Folder
Soure Fie
Vove i
| Renarme. 2| e
fom Terplate

&) Refresh 5
ComerLine Defmites To oo
P P | o omn o
Suitch Worcpace >
Restat

R Import... Tasks B Console (] Properties ¢ Y=o

& Export...

- R path Location Tyee
Propris e
e

0 items selected

_static/file.png

_images/st2_aery32_plugin_create_new_project.png
indecrst x

sphinx-quickstart on Tue De
You can adapt this file con

contain the root “toctree’ |pary32: Create new project
Welcone to Aery32's documentation!

. toctree::
maxdepth: 2

getting started
project_structure.
build_systen
systea_clocks
module_functions
delay_Functions.
string_functions
contribute.

Aery32 Framework in your favorite editor

. toctree:
naxdepth: 2

use_with_eclipse

Spaces:2

restructuredText

_static/down-pressed.png

_images/eclipse_juno_import_existing_code.png
= e e N -
Import Existing Code

Create a new Makefile project from existing code in that same directory.

Project Name.
seny32

Bisting Code Location

CAUsers\Kim\Documents\eery32]

Toolchain for Indexer Settings

Cross GCC
GNU Autotools Toolchain
Microsoft Visual C++

how only avalable toolchains that support this platform

_images/eclipse_juno_utf8_by_default.png
Lol B

2 Preferences
Worlspace ey
+ Genel =
E e
» Appearance == 2 &=
s)
Comprea Ty
oo o,
o C——
b Network Connectior Save automatically before build
Perspectives Iways close unrelated projects without prompt.
ey
e isiol] [
Web Browser Workspace name (shown in window title):
» e
b C/Ces . e
o T S N
i s i O
| etpe
L Totfieencoding R
1 Library Hover © Default (Cp1252)
o I
A~
i
=N |

@

_static/comment-bright.png

_images/st2_board_flashing.png
FOLDES
¥ My Aen32 Project PR

rd.h"

i * <aery32/all.h>
» examples
aitignore 2 namespace aery;
trais ym & nt main(vota)
sen32.map {
aen32 sublime-project
aen32 sublime-workspace
board.cop init_board();

boardn
LCENSEmd

:_pin_high(LeD);

) {

Makefile

Line 21, Column 1; Reparsing C\Users\Kim\Documents\Workspace\aery32\main.cpp done. Tab Size: 3 ==

_images/eclipse_juno_makefile_project_created.png
SRR S R SRR A AR RS R R RN R R RCIE PR S AR SRR A e
Qudeacess || gt | @R

(2 Project Explorer 52 = 1 [&] main.cpp 52 E Outline 52 (@) Make Tar. =&

BSe #include "board.h” CEERERY 0% 7
#include <aery32/all.h> 2 bowdh

o aen32allh

46 sy
> @ a2 using namespace aery;
b & eamples
» [board.cpp = int main(void)
> @ o Put lication initializati he The
poardh ® = put your application initislization sequence here. The
> ([Blumsinepe)) init_board();
aery22 sublime-project
7+ Al1 done. Turn the LED on. =/
gpio_set_pin_high(LeD);

for(s3) { 1
7+ "put your application code here */

EN i

[l Problems 57 ¢ Tasks) Console 5 Properis
Oitems

_images/eclipse_juno_add_symbols.png
| = Properties for aery:

» Resource
Builders
b C/C++ Build
4 C/Ces General
» Code Analysis
Documentstion
File Types
Formatter
Indecer
Language Mappings
Paths and Symbols
Preprocessor Include P
Project References
Run/Debug Settings
» Task Repository
WikiText

Paths and Symbols

Configuration: [Default [Active]

] [Manage Configurations..|

(2 Includes | # Symbols) Libraries | (B Library Paths | (2 Source Location | (2 Output Location | 5] References|

Languages.
Assembly
GNUC
GNUCes

Symbol
_AVR32_UC3AL128_
GNUC

INTMAX

SCHAR MAX

_SHRT_MAX_

Value

4
2147483647
127

32767

o J o]

_images/st2_select_build_system.png
=\Kim) Documents\Workspace\asry32\main.pp (aey32) - Sublime Text 2 . N oo

File Edit Selection Find View Goto [Tooks] Project Preferences Help

aen32 sublime-project Cancel Build Ctrl+Break

board.cpp D
LICENSE.md SRiEEr Haskell
Makefile Ctrl+Shift+Q JavaC

Make
Python
Ruby

New Snippet... New Build System...

Line 21, Column 1

_static/up.png

_images/eclipse_juno_close_welcome_screen.png
vigate Search Project Run Window Help
@@ B0 AN @

_static/plus.png

_images/st2_open_project_file.png
)« Wor.. » sen3 b v| ¢ | Searchaenz2 B

e T
¢ Favorites = Documents ... A
B Desitop ey
Downloads
% o B
el £
B Workspace 2
Dy
o ([seopesubimepaed)
@“"m ¢lboard Open
s [boar¢ Open with Sublime Text2
2 fusic Duce 7.z
w CAmain| g Tarkista Microsoft Security Essentials -sove
odcasts Make
= L
- Send by Bluetooth to
aery32 sublime-project Date modiied .
SUBLIVE-PROJECT File Si previousversions
Sendito

_images/eclipse_juno_add_make_targets.png
Fle Edit Source

Ter

Refactor

Navigate Search Project Run

AR SN A A ER A AR SR) R R RN = e T AR S S SRCR

By Project Bplorer 52 = 8

Hle ¥
PREpr)

b @) Includes

e

» & eamples

(&) board.cpp

» B bosrdh

[main.cpp.
sery32.sublime-project
LICENSEmd
[Makefile
README.md.

Window _Help

2 ModiyMake Torget

3 main.cpp 5
#include "
#include <

using namef

< int main(vd|

{

= put]
init_bd|

7= a1l
gpio_s{|

[l Problems
Consolel|

a1

COT Bui

Target name: Build

-
[EJSame as the target name
Make target: | al]
p—

e
fr—
P

Stop onfirst build error
Run all project builders:

[oy | [cnea]

Quick Access | B |EED
8 5 Ouline @ MakeTar.. 2 = &
2 ©0&|n [

.S 2y

b G sen32

b & eemples
Build
Clean
Cleanall
Debug
Progrem
Rebuild
Rebuild al

B EER 2B =0

